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Abstract. In the context of the COVID-19 pandemic, governments worldwide
face the challenge of designing tailored measures of epidemic control to provide
reliable health protection while allowing more societal and economic activity.
In this paper, we propose an extension of the epidemiological SEIR model to
enable a detailed analysis of commonly discussed tailored measures of epidemic
control—among them group-specific protection and the use of tracing apps. We
introduce groups into the SEIR model that may differ both, in their underlying
parameters as well as in their behavioral response to public health interventions.
We allow for different infectiousness parameters within and across groups,
different asymptomatic, hospitalization, and lethality rates, as well as different
take-up rates of tracing apps. Our results visualize the sharp trade-offs between
different goals of epidemic control, namely a low death toll, avoiding overload
of the health system, and a short duration of the epidemic. We show that a
combination of tailored mechanisms, e.g., the protection of vulnerable groups
together with a “trace & isolate” approach, can be effective in preventing a
high death toll. Protection of vulnerable groups without further measures
requires unrealistically strict isolation. A key insight is that high compliance is
critical for the effectiveness of a “trace & isolate” approach. Our model allows
to analyze the interplay of group-specific social distancing and tracing also
beyond our case study in scenarios with a large number of groups reflecting,
e.g., sectoral, regional, or age differentiation and group-specific take-up rates
for tracing apps.

1. Introduction

The SARS-CoV-2 pandemic challenges nations worldwide. Since February 2020
many nations around the world have locked down significant parts of their social and
economic activities to slow down infection rates. The main goal not to overburden
the health system has been achieved with varying degrees of success across countries.
In the meantime, the implemented “social distancing” measures are effective in
slowing down infection rates. Doubling times of the infected have increased from
three to between thirteen to thirty days in many European countries. However,
one has to bear in mind that due to insufficient testing capacities, data are still
unreliable.

While the lockdown was an effective first reaction to the pandemic, it is obvious
that it also comes at significant social and economic costs. Economic forecasts for
Germany predict a gross domestic product (GDP) reduction of between 4 and 7%
(approx. 150–260 billion Euros) as compared to 2019 even with a one-month lockdown
only. Any extension is expected to increase the costs disproportionately. Beyond the
direct economic damage, significant social costs arise in terms of the consequences of
unemployment, a sharp increase in the education gap, and shorter life expectations
due to physical and psychological illnesses.
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Against this background, one of the most important debates currently is how to
overcome the lockdown in a way that maintains a high level of health protection and,
in particular, does not overburden the health system. The lockdown bought the
governments time to design a medium-run approach that maintains the same level of
health protection while allowing to increase economic and social activities. Tailored
packages of measures can include (i) protection of risk groups, (ii) suppression of
the spread of the virus by legal requirements on obligatory protective measures, (iii)
suppression of the transmission of the virus by maintaining certain social distancing
requirements, (iv) regionally differentiated restarts of social and economic activities,
and finally, (v) the improvement of digitalization in the health sector and the use of
tracing apps and isolation of potentially infected individuals.

One of the challenges for designing appropriate policies, besides the poor avail-
ability of reliable data, is that standard epidemiological approaches do not model
key elements of these public health interventions. In this paper, we thus propose an
extension of the epidemiological SEIR model to enable the analysis of commonly
discussed measures of epidemic control in more detail. We introduce different groups
that may differ both in their underlying parameters as well as in their behavioral
response to public health interventions. In particular, we allow the infectiousness
parameters to differ within and across groups, which enables the detailed analysis
of group-specific measures. Moreover, groups may have different asymptomatic,
hospitalization, and lethality rates. Within this framework, we are able to analyze
social distancing measures within groups, specific protection of groups with high
lethality rates, as well as the detailed effects of “trace & isolate” strategies with
different levels of take-up of the tracing apps needed in this context.

In a case study for the German population, we calibrate our model using parameter
estimates from the existing literature [15–17, 25, 26] to demonstrate the relative
performance of different measures of epidemic control. We have to mention at this
point that available data are mostly preliminary and likely to not be representative.
This is due to the fact that in the beginning of the pandemic, test capacities were
scarce—which they still are—and therefore none of the parameters originates from
controlled random trials. As time goes by, this situation will change. The model can
easily be applied to new and more reliable data sets as well as richer scenarios with,
e.g., a larger number of groups and case studies can be updated as new data become
available. On the other hand, our model and results also provide guidance on which
parameters are key to be identified reliably in order to analyze the effectiveness of
epidemic control approaches in more detail.

Several robust insights emerge from our case study. Our results highlight the
sharp trade-off between different goals of epidemic control, namely keeping the
death toll as low as possible, limiting the duration of the epidemic, i.e., the time
until “enough” immunity exists in the population, and managing intensive care unit
(ICU) capacity. We further show that protection of vulnerable groups is effective
even if it is applied in a mild form as long as it is implemented in combination with
tracing. If tracing is not used together with protection of vulnerable groups, only
strict isolation of those groups can effectively prevent a high death toll. Such very
strict isolation may be socially undesirable. We also show that compliance is very
important for the effectiveness of a “trace & isolate” approach. Tracing is almost
completely ineffective unless compliance is high, which in our case study means at
least 70% of the population install and use tracing apps effectively. Crucially, the
“critical” compliance rate can be brought down substantially when vulnerable groups
are protected.

Our results suggest that an opening strategy can be effectively supported by the
use of apps if they are made mandatory in places where more interaction is allowed.
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This seems possible at many workplaces and, e.g., in educational institutions, but is
probably not effectively applicable in public life in general. Against this background,
maintaining group-specific social distancing measures seems inevitable also in the
medium run. Our model can be used to study such group-specific measures flexibly
for any partition of the population and we re-iterate that any policy conclusions
should continually be revised as new and improved data become available. It is
also important to note that data protection aspects in connection with tracing
apps must be carefully considered, especially as we have seen that high compliance
is absolutely essential. Last, extensive digitalization of the health care and the
registration system is an indispensable prerequisite for the effective use of of a “trace
& isolate” approach. The reason is that quarantine of contact persons has to be
ordered quick enough to effectively break infection chains.

Epidemiological models such as the classic SIR and SEIR models have been
widely applied to model the current crisis (see, e.g., [1–3, 9, 10, 13, 20, 21, 27])
and sometimes have been fitted to the scarce data available [19, 24]. A number of
papers have studied public health interventions within the SIR/SEIR models. Most
of them focused on social distancing [13, 20, 21]. In general, social distancing is
found to be very effective in suppressing the disease in the short run in these models
including age-structured and location-specific models [21, 23]. Other interventions
have been studied less and, if so, in unstructured models assuming a homogeneous
population [7]. Among those, testing and quarantining is seen as a promising tool
to control the epidemic [2], though there is widespread awareness of the difficulty
of implementing these measures with limited testing capacity and a potentially
high asymptomatic rate [17]. Because of this, contact tracing is considered key,
but thought to be difficult for COVID-19 and other Corona viruses; see, e.g., [7, 8].
Recent research argues that viral spread is too fast for manual contact tracing in the
case of COVID-19 and emphasizes that compliance is critical for the effectiveness
of contact-tracing apps [7]. One of the contributions of our research is to model
the behavioral response, specifically concerning compliance with respect to the use
of tracing apps and self-isolation. Our model can furthermore capture sectoral or
regional heterogeneity in underlying parameters and infection rates. These properties
are also interesting with regard to integration into macroeconomic models, which,
for example, are investigated in [4] or [14].

The rest of the paper is organized as follows. Section 2 presents the model and
Section 3 outlines the scenarios and the parameterization of our case study. Section 4
reports the results of our case study and Section 5 concludes.

2. The Models

To model the COVID-19 epidemic together with the key aspects of the related
political and societal discussion such as the effect of lockdown strategies or tracing
apps, we extend the classic SEIR model; see, e.g., [11]. This nonlinear system of
ordinary differential equations (ODEs) describes the dynamics of the transitions
between four different compartments: susceptible (S(t)), exposed (E(t)), infectious
(I(t)), and recovered (R(t)) individuals. The ODE system is given by

dS

dt
= −βIS, (1a)

dE

dt
= βIS − εE, (1b)

dI

dt
= εE − γI, (1c)

dR

dt
= γI, (1d)
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together with given initial conditions

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0.

Moreover, it holds S(t) + E(t) + I(t) + R(t) = 1 for all t, i.e., these functions
represent fractions of the entire group of considered individuals. Thus, it holds
(S(t) + E(t) + I(t) + R(t))N = N , where N is the total population size. Note
that the group of recovered people also contains deaths in this model. The basic
reproduction number is R0 = β/γ, which can be thought of as the expected number
of cases generated by one case in the model. Table 1 summarizes the notation for
the SEIR model.

Table 1. Notation of the SEIR model.

Symbol Explanation

S Susceptible individuals
E Exposed individuals in the latent period
I Infectious individuals
R Recovered individuals with immunity
β Infection rate
1/γ Average infectious period
N Total population size
R0 Basic reproduction number
1/ε Average latent period

2.1. An Extended SEIR Model: SEI3RD. The classic SEIR model (1) is now
extended to distinguish (i) between different groups such as old and young people,
or vulnerable and non-vulnerable individuals, (ii) between different categories of
infectiousness (asymptomatic, symptomatic, and severe cases), and (iii) between
recovered and dead people. Being able to explicitly distinguish these different groups
is important as they can greatly differ in terms of their underlying parameters as
well as in terms of their behavioral response to public health interventions.

First, we consider different groups k ∈ {1, . . . ,K}. The total number of individu-
als in group k is denoted with Nk. Groups may differ in multiple characteristics such
as age, gender, location, profession, immunity status, etc. The compartments S, E,
I, and R are thus split up into Sk, Ek, Ik, and Rk for all k. In our analysis, we also
capture specific aspects that are needed to analyze a variety of strategies to slow
down an epidemic. We explicitly capture that, across groups, different fractions of
infectious individuals show symptoms of the infection. We denote the fraction (of Ik)
of asymptomatic individuals Iasym

k in group k by ηk ∈ (0, 1). Thus, 1 − ηk is the
fraction of infectious individuals that are symptomatic. Among those symptomatic
individuals, a fraction νk ∈ (0, 1) suffers a severe course of the disease and is assumed
to need intensive care unit (ICU) treatment, while a fraction (1−νk) is symptomatic
without the need for intensive care. We denote the group of severely infectious by
Isev
k and the symptomatic individuals without a severe course of infection by Isym

k .
Out of the severely infectious individuals in Isev

k , a certain fraction σk will not
survive. The lethality rate σk is group-specific and endogenous, i.e., it depends on
the availability of ICU beds and the number of severe cases. We denote the lethality
rate given a severely ill patient in group k has access to an ICU bed by σ̂k. The
lethality rate increases endogenously as ICU is exhausted; see Equation (3) below.

In our model, individuals infect other individuals with a certain probability. This
probability, modeled via contact rates as in the classic SEIR model, is affected by
various aspects, e.g., how likely people meet or whether they show symptoms of
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Table 2. Notation used in the SEI3RD model.

Symbol Explanation

K Number of groups
Nk Total number of individuals in group k
Sk Susceptible individuals in group k
Ek Exposed individuals in the latent period in group k
Iasym
k Asymptomatic infectious individuals in group k
Isym
k Symptomatic infectious individuals in group k
Isev
k Severely infectious individuals in group k
Rk Recovered individuals with immunity in group k
Dk Dead individuals in group k
ηk Fraction of asymptomatic infectious individuals
νk Fraction (of Isym

k ) of severely infectious individuals
σk Lethality rate
βsym
kj , βsym

kj , βsev
kj Group-specific infection rates

1/γasym Average infectious period
of asymptomatic infectious individuals

1/γsym
k Group-specific average infectious period

of asymptomatic infectious individuals
1/γsev-r, 1/γsev-d Group-specific average infectious period

of severely infectious individuals

the infection. Our model allows for individuals from Iasym
k , Isym

k , and Isev
k to have

different probabilities, depending on their category of infectiousness as well as their
group membership.1 We denote the contact rate between symptomatic individuals
of group k and individuals of group j by βsym

kj , and by βasym
kj the corresponding

contact rate for infectious but asymptomatic individuals. Finally, we also model
potentially group-specific average durations of the infection for the symptomatic
and severely ill individuals. By contrast, we assume that the average infectious
period of asymptomatically infectious individuals is the same across groups.

All notation used in the SEI3RD model is summarized in Table 2 and the ODE
system of the model is given by

dSk
dt

= −
K∑
`=1

(βasym
`k Iasym

` + βsym
`k Isym

` + βsev
`k I

sev
` )Sk, (2a)

dEk
dt

=
K∑
`=1

(βasym
`k Iasym

` + βsym
`k Isym

` + βsev
`k I

sev
` )Sk − εkEk, (2b)

dIasym
k

dt
= ηkεkEk − γasymIasym

k , (2c)

dIsym
k

dt
= (1− ηk) (1− νk) εkEk − γsym

k Isym
k , (2d)

dIsev
k

dt
= (1− ηk) νkεkEk −

(
(1− σk(t))γsev-r

k + σk(t)γ
sev-d
k

)
Isev
k , (2e)

dRk
dt

= γasymIasym
k + γsym

k Isym
k + (1− σk(t))γsev-r

k Isev
k , (2f)

dDk

dt
= σk(t)γ

sev-d
k Isev

k (2g)

for all k = 1, . . . ,K.

1For instance, symptomatic individuals may be more infectious than asymptomatic individuals
(as for example they cough) or less infectious (as they are more likely to stay home and hence have
fewer contacts).
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Equation (2a) describes the change in the number of susceptible individuals in
group k over time. Equation (2b) is the change in the number of exposed individuals
in group k and εk is inversely proportional to the incubation period for individuals
in group k. Exposed individuals have been infected but are not yet infectious. As
specified in Equations (2c)–(2e) we distinguish between asymptomatically (“asym”),
symptomatically (“sym”) infectious and severely affected (“sev”) individuals.

A key aspect of the SEI3RD model is that the lethality rates σk(t) are endogenous
and time-dependent. We assume that, without hospitalization, all individuals with a
severe course of the disease die. The number of ICU beds provided by the healthcare
system is denoted by B. The probability of death and recovery, respectively, depends
of the number of free beds in relation to severe cases and also on the selection
mechanism that determines who is getting a free bed. We assume that the free beds
are rationed proportionally across groups.2 Then, σk is endogenously determined
from the lethality rate σ̂k of patients with a severe infection who have access to ICU
care as follows,

σk(t) =

{
σ̂k, if Isev

k (t)Nk ≤ Bk,
σ̂kBk+I

sev
k (t)Nk−Bk

Isevk (t)Nk
, if Isev

k (t)Nk > Bk,
(3)

where Bk = (Nk/N)B is the number of ICU beds available to group k. The
endogenous lethality rate is then finally used in Equations (2f) and (2g) to model
the dynamics of the compartments of recovered and dead individuals.

2.2. The SEI3Q3RD Model: An Extended SEI3RD Model to Capture
the Effect of Tracing Apps to Break Infection Chains. In the following, we
extend the SEI3RD model to be able to analyze a policy to reduce the number of
infected individuals by the widespread introduction of tracing apps. These apps
allow to break infection chains by sending infected individuals to quarantine (Q)
before they can spread the virus further. Here, we assume that a fraction ψk of
individuals in group k uses such a tracing app effectively. An infection chain can
be broken if both, the carrier and the recipient of the virus, use a tracing app
“effectively”, meaning that the recipient of the virus can be sent to quarantine before
he or she is infectious (i.e., enters one of the groups in compartment I).3 We model
the impact of tracing by splitting the compartment E consisting of individuals in
the incubation period. In particular, we assume that, as a spreader of the virus, only
individuals that are aware of their infection (symptomatic or severely infectious)
can be recognized by the health authorities and can contribute to break infection
chains if they use the app effectively. This applies to a fraction ψk of group k. All
their contacts who also use the app (fraction ψ`) will be identified. Thus, when
individuals from groups k and ` meet, then ψkψ` of the infected individuals are
“traced” and enter Etr

k , while the remaining infected individuals are “not traced”
and enter Ent

k . We model the fact that infected individuals who are identified
through contact tracing are sent into quarantine by splitting the group of infectious
individuals further into I and Q. All individuals from Etr

k enter compartments Q
when they become infectious while all individuals from Ent

k enter compartments I.

2A different rationing mechanism might be interesting to look at if one is interested in the age
structure of the dead or if one wants to analyze the effect of different triage mechanisms that imply
preferential treatment, e.g., for young people. Those extensions are easily possible by modifying of
Equation (3).

3This obviously depends on individual compliance in downloading and using the app but it
may also depend on the effectiveness of the health system to contact potentially infected people
and send them into quarantine, i.e., on the speed of notification etc. Also note that the fraction
of the population that uses tracing apps may vary across groups due to acceptance, ability, or
availability of a smart phone.
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While the individuals in I are actively infecting other individuals over time, those
in Q do not. Individuals from Iasym

k , Isym
k , Qasym

k , and Qsym
k enter the recovered

compartment Rk after potentially different durations of illness. Individuals in Isev
k

and Qsev
k enter either Rk or Dk. Again, the lethality rate is endogenous and depends

on the availability of ICU beds for individuals in Isev
k and Qsev

k ; see Equation (5).
The SEI3Q3RD model looks as follows:

dSk
dt

= −
K∑
`=1

(βasym
`k Iasym

` + βsym
`k Isym

` + βsev
`k I

sev
` )Sk (4a)

dEnt
k

dt
=

K∑
`=1

(βasym
`k Iasym

` )Sk (4b)

+
K∑
`=1

(βsym
`k (1− ψ`ψk)Isym

` + βsev
`k (1− ψ`ψk)Isev

` )Sk − εkEnt
k ,

dEtr
k

dt
=

K∑
`=1

(βsym
`k ψ`ψkI

sym
` + βsev

`k ψ`ψkI
sev
` )Sk − εkEtr

k , (4c)

dIasym
k

dt
= ηkεkE

nt
k − γasymIasym

k , (4d)

dIsym
k

dt
= (1− ηk) (1− νk) εkEnt

k − γ
sym
k Isym

k , (4e)

dIsev
k

dt
= (1− ηk) νkεkEnt

k −
(
(1− σk(t))γsev-r

k + σk(t)γ
sev-d
k

)
Isev
k , (4f)

dQasym
k

dt
= ηkεkE

tr
k − γasymQasym

k , (4g)

dQsym
k

dt
= (1− ηk) (1− νk) εkEtr

k − γ
sym
k Qsym

k , (4h)

dQsev
k

dt
= (1− ηk) νkεkEtr

k −
(
(1− σk(t))γsev-r

k + σk(t)γ
sev-d
k

)
Qsev
k , (4i)

dRk
dt

= γasymIasym
k + γsym

k Isym
k + (1− σk(t))γsev-r

k Isev
k (4j)

+ γasym
k Qasym

k + γsym
k Qsym

k + (1− σk(t))γsev-r
k Qsev

k ,

dDk

dt
= σk(t)γ

sev-d
k Isev

k + σk(t)γ
sev-d
k Qsev

k (4k)

for all k = 1, . . . ,K.
We again assume that, without hospitalization, all individuals with a severe course

of the disease die and we assume again that free beds are rationed proportionally
across groups. Then, σk is given, in analogy to (3), by

σk(t) =

{
σ̂k, if (Isev

k (t) +Qsev
k (t))Nk ≤ Bk,

σ̂kBk+(Isevk (t)+Qsev
k (t))Nk−Bk

(Isevk (t)+Qsev
k (t))Nk

, if (Isev
k (t) +Qsev

k (t))Nk > Bk,
(5)

with Bk = (Nk/N)B.

2.3. Numerical Solution Approach. The presented SEI3RD and SEI3Q3RD
models are nonlinear systems of ordinary differential equations. We solved these
systems using an explicit Euler scheme in time (see, e.g., [22]) with an equidistant step
size of 10−2. Both the models and the ODE solver are implemented in Python 3.7.4
using the NumPy package.
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3. Scenarios

We use our models to analyze several widely discussed scenarios and provide
evidence on their effectiveness. We provide two benchmarks (laissez-faire and uniform
social distancing) and then analyze several variants of more sophisticated epidemic
control approaches. The approaches we analyze include (i) specific protection
of vulnerable groups, (ii) the use of tracing apps to break infection chains, and
combinations of the two. With respect to tracing apps, we consider different take-up
(or compliance) rates. All scenarios are also analyzed under different assumptions
concerning the asymptomatic rate and the lethality of the virus.

3.1. First Scenario: Benchmark. We first consider a benchmark scenario in
which no measures are taken. We use estimates of β, γ, and σ from the literature. In
particular, we assume that the values of β within and across groups induce a basic
reproduction number R0 between 2.2 and 3. This is the range of typical estimates
for COVID-19 [15, 28].

3.2. Second Scenario: Uniform Social Distancing. As a second benchmark
we consider a standard social distancing scenario in which β is uniformly lowered
within and across all groups to a value βSD. We calibrate our model to reach an
effective reproductive number of between 0.5 and 1.5 under social distancing in our
different scenarios.

3.3. Third Scenario: Group-Specific Social Distancing. The third policy
that we analyze is to target β differently within and across groups. This could,
e.g., reflect a policy to largely protect groups that are at risk by implementing
measures to lower transmission involving this group. In our parameterization,
the vulnerable group is characterized by having a higher conditional probability
of a severe course of the disease (modeled using the parameter ν) and a higher
conditional lethality rate among ICU patients (parameter σ̂). Protection policies for
such vulnerable groups are particularly focused on keeping all β’s low that involve
this group. Interactions within the less vulnerable group can be less restricted. One
question we will ask is how much one can allow βLL, which measures transmission
within the low vulnerability group, to increase while at the same time not having
to lower the remaining β’s too much and still achieve the same effect on overall
lethality as under uniform social distancing.

3.4. Fourth Scenario: Trace and Isolate. The third widely discussed policy is
to reduce the number of infectious individuals I by the widespread use of tracing
apps that allow to break infection chains. This scenario assumes that a fraction ψk
of individuals in group k uses such tracing apps. The app continuously registers
contact persons that an individual comes close to in the context of interactions.
Once an individual is tested positively for COVID-19, the individual is free to give
the health administration permission to use this data to contact all individuals that
have potentially been infected. We assume that all individuals that use the app also
agree to the use of their data and that the health office’s procedures are fast enough
to actually break the infection chain for all individuals that use the app. This means,
in particular, that potentially infected individuals are effectively isolated, i.e., sent
to self-quarantine until a test can verify their infection status as positive or negative.
Note that the fraction of the population that uses tracing apps may vary across
groups due to acceptance, ability, or availability of a smart phone. Note also that
the compliance rate can also be interpreted as to reflect the effectiveness of the
health system or other aspects that reduce the effectiveness of the app.

As multidimensional policies of infection control we finally also analyze combina-
tions of the measures taken in the third and fourth scenario.
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3.5. Parameterization. We now describe the parameterization for our case study
in more detail. Our case study is modeled on the German population of about 83
million people. We emphasize that the aim of the case study is to demonstrate the
potential of the modeling approach to provide important insights on the effectiveness
of various sophisticated mechanisms of epidemic control. Those mechanisms are
important in general to combine effective health protection with social and economic
activities. The exact design of the mechanisms will of course depend on the specific
situation at hand. A consideration of specific scenarios, with potentially more groups
and more accurate parameters is not the focus of this paper, but a possible application
of the model. Let us also note that, up to now, we face significant uncertainty
concerning key parameters that will drive results and affect policy conclusions.
Hopefully, parameter estimates will substantially improve in the upcoming months
due to random testing and data analysis.

We now motivate our parameter choices by discussing preliminary evidence on
COVID-19 from the very recent literature. If no measures of epidemic control are
taken, it is estimated that the basic reproduction number R0 is somewhere between 2
and 3; see the report [5] by the European Center for Disease Control.

Typical estimates are 3 (reported in [26]), 2.3 (reported in [15]) or 2.26 (reported
in [28]). For Germany, the Robert Koch-Institut (RKI) recently estimated R0 to be
between 2.4 and 3.3 [12]. The social distancing measures introduced under lockdown
measures across Europe are estimated to induce an effective reproduction number
of somewhere between 0.5 and 1. For Germany the RKI estimates R = 0.9 with a
95% confidence interval between 0.8 and 1.1 [12]. We chose values for our social
distancing scenarios that cover this range of estimates and allow also for some milder
and some stricter forms of social distancing.

Estimates for the share of asymptomatic infections range from 0.18 on the Princess
Diamond cruise-ship, i.e., in a sample of mostly elderly people, see [17], to 0.86 for
China [16].

When infected, the incubation period is typically thought to have a median
of 5 days—although it can be much faster. The duration of the infection period
(after the incubation period and before recovery or death) varies between 7 and 18
days or potentially even longer in severe cases. The severity of COVID-19 differs
widely across age groups with less than 1% of infected under 10 years old being
hospitalized but over 15% aged over 70 needing hospital treatment [25]. Only
a subset of the hospitalized need ICU treatment. Based one existing data from
Germany we estimate that percentage at around 30%.

There are no reliable estimates for conditional lethality, but at the moment it is
thought that around 30–35% of ICU patients die. However, this number will also
differ across age and other groups. here are estimates for overall lethality, which
also show a great deal of variation around age. In [18], the authors estimate overall
lethality rates of 2.3% for China (and of over 6% at that early stage for Italy),
ranging from 0.2% for those under 40 years of age to 14.8% for those above 80 years
of age. The overall lethality rate implied by our parameterization is somewhat lower
than these numbers taking into account the fact that it is based on all symptomatic
individuals and not just on officially recorded cases.

For our simulations, we split the population in two groups. One group is assumed
to be composed out of people having a high risk of a severe course of the infection,
the other group having a lower risk. We systematically vary the parameters β, η,
σ̂, and ψ to gain insights into the effect of social distancing, the protection of the
vulnerable group, the impact of the asymptomatic rate, and the effect of the use of
a tracing app to break infection chains. Apart from this, all scenarios are based on
the parameterization given in Table 3, which summarizes our fixed parameters.
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Table 3. Parameter values.

Description Parameter Low Risk High Risk

Average incubation time 1/ε 5 5
Infection duration, asymptomatic 1/γasym 10 10
Infection duration, symptomatic 1/γsym 12.5 12.5
Infection duration, severe & recovered 1/γsev-r 20 20
Infection duration, severe & dead 1/γsev-d 14 14
Share of ICU patients among ν 0.0075 0.045
the symptomatic

ICU beds B 24 000
Total population size N 66 119 010 17 041 997

Table 4. Parameters that vary across the main scenarios discussed below.

Benchmark

B1 B2 B3

βHH 0.18 0.155 0.155
βHL 0.18 0.155 0.155
βLH 0.18 0.155 0.155
βLL 0.18 0.155 0.155
ηH 0.25 0.25 0.25
ηL 0.25 0.25 0.5

Uniform Social Distancing

USD1 USD2 USD3

βHH 0.1 0.08 0.04
βHL 0.1 0.08 0.04
βLH 0.1 0.08 0.04
βLL 0.1 0.08 0.04
ηH 0.25 0.25 0.25
ηL 0.5 0.5 0.5

Group-Specific Social Distancing

GSD1 GSD2 GSD3

βHH 0.04 0.04 0.08
βHL 0.04 0.04 0.08
βLH 0.04 0.04 0.08
βLL 0.18 0.155 0.11
ηH 0.25 0.25 0.25
ηL 0.5 0.5 0.5

Varying within each scenario

σ̂H {0.4,0.45} {0.4,0.45} {0.4,0.45}
σ̂L {0.05,0.1} {0.05,0.1} {0.05,0.1}

Table 4 shows the parameters that change across the various scenarios that we
simulate. We will further motivate specific parameter choices in the course of the
presentation of our results. In the benchmark (B) and the uniform social distancing
(USD) scenarios, we have chosen β parameters to cover different reproduction
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numbers. For the group-specific social distancing (GSD) scenarios, we split the
population in a vulnerable and a non-vulnerable group and choose different β
parameters for interactions that involve the vulnerable group and those that do
not. We moreover vary the lethality rates and the asymptomatic rates to gain some
insights on the sensitivity of the results.

4. Results

This section contains the results and discussion of our simulation outcomes.
In order to first draw the bigger picture, we present two selected scenarios that
illustrate extreme cases, the scenarios B2 and USD2 (see Table 4). Scenario B2
represents a situation without any measures of epidemic control and a reproduction
rate R ≈ 2.6. Scenario USD2 assumes thorough social distancing leading to an
effective reproduction rate R ≈ 1.4 The course of the epidemic in the two scenarios
is presented in Figure 1 (with days on the x-axis and number of individuals on the
y-axis). Note that for both scenarios we show group-specific outcomes for a group
with high vulnerability (H) and a group with low vulnerability (L). Here and in
what follows, we define the duration of the epidemic as the number of days until the
number of severe cases is below 5% of ICU capacity and where at the same time
the share of the population in the susceptible category is below 1/R0.5
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Figure 1. Dynamics of the COVID-19 epidemic for the B2 (left)
and the USD2 (right) scenario: Susceptible individuals in green,
recovered in blue, and aggregated asymptomatic, symptomatic, and
severe infectious cases in orange. The group with low vulnerability
has dotted curves, the group with high vulnerability is plotted
solidly.

Figure 1 (left) illustrates that without any intervention, the epidemic is quickly
over but claims many lives. In particular, due to the rapid exponential spread of
the epidemic in scenario B2, about 80% of the population has gone through the
infection after only 247 days. At this point, only about 20% of the population
remain susceptible, which corresponds to herd immunity.6 Due to the fact that the

4As in our model asymptomatically, symptomatically and severely infectious can have different
recovery rates, R changes over time as the relative frequency of these groups in the population
changes. This is why the values of R we indicate are only approximations.

5To achieve herd immunity, one needs a share of around 1− 1/R0 percent of the population to
be immune. For a value of R0 = 3 this corresponds to two thirds of the population. For lower
values of R0, this share is lower.

6One of the many parameters that is not yet fully clear for this disease is how long immunity
lasts once someone has been exposed. We assume here that exposed individuals remain immune for
500 days at least. If this is not the case, i.e., if immunity is shorter, then the share of susceptible
individuals after 500 days will be larger. Hence, the percentage of susceptible individuals we report
in the tables are always lower bounds.
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health system’s ICU capacity is exceeded for 140 days during the epidemic, 500 000
individuals die. Due to scaling, this is not visualized in Figure 1, but we discuss the
details in Section 4.1.

By contrast, under social distancing (see Figure 1, right), the epidemic lasts
far longer than 500 days. After the first 500 days, 92% of the population is still
susceptible. On the positive side, the health system’s capacity is always sufficient
and only 26 000 individuals die. On the negative side, the epidemic has not been
overcome: The situation faced by society after 500 days is similar to the one on day
zero.

These figures clearly illustrate that both options are no realistic alternatives
for a society to deal with the epidemic in the medium run. Scenario B2 implies
an unbearable situation for society, while USD2 does not solve but preserve the
problem, with the solution still pending and the economy shut down with all
the associated problems. In the following, we thus discuss these two and other
benchmark scenarios (Section 4.1) and social distancing scenarios (Section 4.2).
We then illustrate what our model can contribute to the understanding of the
effectiveness of more sophisticated (tailored) approaches of epidemic control. In
particular, we focus on group-specific social distancing (Section 4.3) and the effect
of tracing apps (Section 4.4), as well as combinations of the two.

4.1. Benchmark. We first analyze three benchmark scenarios in which we assume
that no epidemic control takes place. For details and exact parameterizations see
Table 4. Scenario B1 is characterized by a high reproduction number (on average
R ≈ 3) and a low asymptomatic rate of 25% for both groups. In B2, R ≈ 2.6 and
otherwise the parameters are identical to B1. In B3, R ≈ 2.2 and the L group has a
higher asymptomatic rate of 50%. Each model is run using varying assumptions on
lethality rates; see Table 4.

For each model we report in Table 5 the death toll within the first 500 days of
the epidemic, the number of days in which ICU capacity is exceeded, the duration
of the epidemic, and the fraction of susceptible individuals after 500 days.

Table 5. Results for the Benchmark Scenarios

B1 B2 B3

Deaths in first 500 days 537–545K 445–527K 238–329K
ICU capacity exceeded on 125–126 days 136–140 days 144–150 days
Duration 219–220 days 241–247 days 274–281 days
Susceptible after 500 days 11–12% 19–21% 21–23%

In line with other studies [6, 10, 13], our results suggest that the epidemic will
claim a large number of lives if left unchecked. In our simulations ICU capacity
would be exceeded for between three and five months and the death toll would
be anywhere between 240 000 to over half a million lives. Because of these and
similar results we have seen social distancing implemented all over Europe in the
last few months. Against this background, the next section addresses various social
distancing scenarios.

4.2. Uniform Social Distancing. As a second benchmark we consider three
uniform social distancing scenarios. Uniform social distancing means that all
interactions in the population are reduced to the same extent. Among our three
scenarios, USD1 represents a case of mild social distancing with an average effective
reproduction number of R ≈ 1.5. All parameters but the contact rates β are identical
to B3. In this scenario, the epidemic is slowed down but the number of cases is still
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increasing during the first 500 days. Scenario USD2 has an R ≈ 1, i.e., also here the
disease is progressing, but more slowly. Scenario USD3 suppresses the disease with
R ≈ 0.6, which is at the lower end of the estimates of the effective reproductive
number during the recent/current lockdowns in Europe.

Table 6. Results for the Uniform Social Distancing Scenarios

USD1 USD2 USD3

Deaths in first 500 days 121–126K 25–26K 7K
ICU capacity exceeded on 11–21 days 0 days 0 days
Duration > 500 days > 500 days > 500 days
Susceptible after 500 days 60–62% 92–93% 99%

Under mild social distancing (USD1) the epidemic progresses slowly. ICU capacity
is slightly exceeded over a period of at most three weeks, but there is still a death
toll of 120 000 in the first 500 days. After 500 days a large share of the population is
still susceptible and, moreover, it is unknown, given current evidence, whether those
who passed through the illness early on are still immune after 500 days. In USD2
and USD3, social distancing is effective to suppress the epidemic with the effect
that the number of deaths in the first 500 days is comparatively low. However, in
these scenarios the vast majority of the population (up to 99%) is still susceptible
after 500 days. Hence, especially in USD2 and USD3, the death toll will further
increase after 500 days until a vaccine is widely available.7 Suppression is not a long
term strategy and, in the absence of an effective vaccine, alternatives need to be
considered. This is what we focus on in the next two sections.

4.3. Group-Specific Social Distancing. Our group-structured model allows us
to study non-uniform social distancing measures, which are designed to induce
different within-group and across-group contact rates. This could allow to explicitly
protect vulnerable groups (as shown in our case study) or to design tailored social
distancing measures that allow particularly desirable or important economic and
societal activities while suppressing others. This means, groups could be defined by
sector, age, region, or otherwise.

In this part of our case study we focus on one particular split, which has received
much attention in recent policy discussions in which the idea is to protect vulnerable
groups. We hence split the population in the 20% most vulnerable and the rest of
the population.8

The scenarios we discuss here build on our benchmark scenarios B2 and B3.
We then either reduce only contact rates for interactions that affect individuals
with high vulnerability (H) or reduce all contact rates but at different rates. The
first approach corresponds to a strategy to resume live as usual except for the
vulnerable, who are then severely protected. The second approach corresponds to
the establishment of general protection measures also in daily live, with particular
protective measures applied to vulnerable individuals. GSD1 builds on benchmark B2,
but then drastically reduces all interactions involving highly vulnerable individuals,

7Note also that all our uniform social distancing scenarios are based on benchmark B3, which
assumes a higher asymptomatic rate among the group with low vulnerability. In the case of a
lower asymptomatic rate (comparison to B2), there are more deaths in the first 500 days. Other
than that the results are very similar.

8The 20% most vulnerable individuals are those most likely to have a severe course of the
disease. It has been shown that mostly age, but also gender and certain health conditions, are
strong predictors of the severity of COVID-19. Of course, it is also possible to split the population
in other ways and, e.g., to protect the most vulnerable 25 or 30%.
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i.e., contact rates to βHH = βLH = βHL = 0.04. This roughly corresponds to an
effective reproduction number of R ≈ 0.6 generated from these interactions only.
GSD2 also restricts all interactions involving the highly vulnerable population to
β = 0.04 but corresponds to B3 in all other parameters, i.e., in particular assumes
a lower contact rate βLL from interactions among the less vulnerable. GSD3 is a
scenario where both groups engage in social distancing but to a different extent,
with LL-interactions restricted to βLL = 0.11 and all other interactions restricted to
βHH = βLH = βHL = 0.04. Otherwise, the parameters in GSD3 are identical to GSD2
and B3. Table 7 reports the results for these three scenarios.

Table 7. Results for the Group-Specific Social Distancing Scenarios

GSD1 GSD2 GSD3

Deaths in first 500 days 159–163 K 75K 73–75K
ICU capacity exceeded on 129 days 55–56 days 0 days
Duration 294 days > 500 days > 500 days
Susceptible after 500 days 37–38% 55–56% 70–75%

Compared to the benchmark scenario B2, GSD1 manages to reduce the death toll
by about 70%, merely by shielding vulnerable people (and leaving LL-interactions
unrestricted). However, despite the extreme protection of vulnerable people in this
scenario, ICU capacity is exceeded for 129 days and the death toll is still high
(around 160 000 deaths). If the interactions involving the less vulnerable (LL) have
somewhat lower contact rates (as in GSD2), we observe a lower death toll and ICU
capacity is exceeded on fewer days (around 55 days). Still there are 75 000 deaths
(which is about an 85% reduction compared to scenario B2 in which vulnerable
people are not protected).

The only scenario where ICU capacity is not exceeded is GSD3, where both
groups are targeted. Compared to GSD2, this scenario does not lead to fewer deaths,
though. This is due to the fact that vulnerable individuals are less restricted and,
thus, those who have a higher probability to suffer a severe course of infection
and to eventually pass away will incur relatively more infections. Moreover, since
interactions among less vulnerable individuals are more restricted, a larger share
of the population is still susceptible after 500 days. Compared to scenario USD1,
where uniform social distancing is applied in a mild form and all interactions imply
an effective reproduction number of about R = 1.5, the death toll in scenario GSD3
is reduced by 50 000 (approx. 40%) and ICU capacity is not exceeded, while it is
exceeded on 11–21 days in scenario USD1. Hence, protection of vulnerable groups
in addition to mild social distancing measures for the rest of the population can
be effective to some extent. The results of scenarios GSD1 and GSD2 show, on
the contrary, that protection of the vulnerable population alone is not sufficient to
adequately cope with the epidemic (i.e., reduce the death toll to a bearable level and
protect the health system), even if measures to protect the vulnerable population
are quite extreme.

4.4. Tracing and Quarantine. We now use the SEI3Q3RD model to assess the
effect of introducing the use of tracing apps with the aim to send individuals to
quarantine that had contact to an infectious individual. Recall that we assume that
only symptomatic infectious individuals are identified and that infection chains can
only be broken if both, the infectious and the potentially infected individual, use the
app. We investigate different levels of compliance by varying the model parameter
ψ between 0.2 (20% use the app, low compliance; “l”) and 0.8 (80% use the app,
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high compliance; “h”). We also consider a scenario in which individuals with low
vulnerability use the app more effectively. We do so against the background that (i)
highly vulnerable individuals are often elderly people who might use smartphones
less consistently and (ii) the benefit of app usage among less vulnerable young people
is significantly higher since it enables society to resume productive activities and,
while doing so, breaking infection chains.

Tracing can be applied as the only measure or it can be combined with other
strategies like uniform or group-specific social distancing. We show results for all
three cases, with varying compliance patterns. The tracing scenarios we present
in detail add contact tracing on top of the benchmark scenario B2 (B2-Trace),
the uniform social distancing scenario USD1 (USD1-Trace) and the group-specific
social distancing scenario GSD3 (GSD3-Trace). In Tables 8–10, we show results for
three different patterns of compliance: both groups have high compliance, i.e., 80%
take-up rate of the app (hh), both groups have low compliance, i.e., 20% take-up (ll),
and the case in which the less vulnerable have high compliance of 80%, while only
20% out of the vulnerable use the app effectively (hl).

Table 8. Results for the Benchmark Scenario B2 with Tracing

B2-Trace

Compliance hh ll hl

Deaths in first 500 days 74–75K 508K 197K
ICU capacity exceeded on 0 days 139 days 170 days
Duration > 500 days 247 days 363 days
Susceptible after 500 days 78% 19–20% 46–47%

Table 9. Results for the Uniform Social Distancing Scenario USD1
with Tracing

USD1-Trace

Compliance hh ll hl

Deaths in first 500 days 15–16K 79–82K 23–24K
ICU capacity exceeded on 0 days 0 days 0 days
Duration > 500 days > 500 days > 500 days
Susceptible after 500 days 98% 75% 92–93%

Table 10. Results for the Group-Specific Social Distancing Sce-
nario GSD3 with Tracing

GSD3-Trace

Compliance hh ll hl

Deaths in first 500 days 13–14K 66–67K 17–18K
ICU capacity exceeded on 0 days 0 days 0 days
Duration > 500 days > 500 days > 500 days
Susceptible after 500 days 95% 75–76% 93–94%

In all scenarios, tracing is effective to reduce the death toll in the first 500 days
substantially if compliance is high, but not if compliance is low. In B2-Trace (only
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tracing without further measures), for example, with high compliance in both groups,
450 000 deaths are avoided in the first 500 days, a reduction of about 85%. Moreover,
tracing is effective in keeping the number of severe cases within ICU capacity if
compliance is high. There are, however, still 74 000–75 000 deaths even in this case.9

With low compliance, by contrast, tracing is ineffective and barely improves over the
benchmark case. At the peak, the severe cases massively outnumber ICU capacity
and the death toll is high (see left panel in Figure 2). If only the group with low
vulnerability is compliant, the death toll is still reduced by 330 000 (62%) compared
to the same scenario without tracing. ICU capacity is still exceeded for a long
period of time, but less strongly compared with the case where both groups have
low compliance, see the right panel in Figure 2.10 We also see again that the more
effective epidemic control is, the higher is the fraction of individuals that remains
susceptible after 500 days.
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Figure 2. Dynamics of the COVID-19 epidemic for scenario B2-
Trace with low (20%) compliance by both groups (ll, left) and with
mixed (20% by group H and 80% by group L) compliance (hl, right):
Symptomatic individuals (traced and not traced added together) in
blue, asymptomatic in green, severe cases in purple, overall severe
cases (H and L group aggregated) in orange, dead in red, and ICU
capacity in black. The group with low vulnerability has dotted
curves, the group with high vulnerability is plotted solidly.

If we add tracing onto a scenario with uniform or group-specific social distancing
(USD1-Trace and GSD3-Trace; see Tables 9 and 10), we see similar patterns, but in
a context where there is substantially less strain on the health system compared
to the benchmark scenarios. The death toll is significantly reduced compared to
the respective scenarios without tracing if compliance is high, but not if it is low.
Interestingly, if only the group with low vulnerability has a high take-up rate, and
social distancing is in place, the death toll is close to the death toll under generally
high compliance if group-specific social distancing is in place. The numbers also
show that even if compliance is low, tracing is able to shave off some of the peak
demand for ICU beds. In scenario USD1-Trace, this means that we manage to stay
within ICU capacity with tracing but not without (in the GSD3-Trace scenarios,
ICU capacity is sufficient already without tracing).11

9Recall that this scenario uses a low asymptomatic rate. The asymptomatic rate is key for
tracing and if it is increased to 50% only for the L group, then there are around 132 000 deaths in
this case.

10As the epidemic progresses more slowly in this case, ICU capacity is exceeded for more days
compared to the case where both groups show low compliance. However, it is exceeded by a smaller
amount on most of these days, especially at and around the peak; see top panels of Figure 3.

11There are, of course, also scenarios based on group-specific social distancing in which without
tracing, ICU capacity is exceeded but not without. If, for example, starting from scenario GSD3
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Figure 3. Dynamics of the epidemic (higher level of detail) for
Scenario B2-Trace with low compliance (ll, top left) and mixed com-
pliance (hl, top right) and Scenario GSD3-Trace with low compliance
(ll, bottom left) and mixed compliance (hl, bottom right). Severely
affected infectious individuals in purple (traced and not traced
lumped together), overall severely affected infectious individuals in
orange (traced and non traced of both groups, H and L), dead in
red, and ICU capacity in black. The group with low vulnerability
(L) has dotted curves, the group with high vulnerability (H) is
plotted solidly.

Figure 3 visualizes the difference in severe infections and death tolls in a situation
where only tracing is applied without further measures (upper two figures, scenario
B2-Trace) and the situation where tracing is combined with group-specific social
distancing (lower two figures, scenario GSD3-Trace). The left panel shows the case
of low compliance (ll), while the right panel shows the case of mixed compliance (hl).
Obviously, high compliance among the individuals with low vulnerability suffices to
keep the death toll extremely low in case the vulnerable group is protected (lower
right panel). In case of no further measures (upper left panel), the number of severe
infections are reduced, however, ICU capacity is still exceeded for a long time period
and the death toll is high. This can be seen in Figure 2 (red curve), which shows
the same scenario with a different scale at the ordinate).

Figure 4 highlights the crucial role of compliance when it comes to the use of
tracing apps. The top-left panel shows the benchmark case B2-Trace. It illustrates
that—if compliance is high—the death toll can be significantly reduced. The figure
also illustrates a very steep gradient. As compliance decreases, the death toll
increases very quickly. For a compliance rate of 70%, the number of deaths is
already above 100 000 (a 1100% increase over full compliance) and as compliance

we allow more interaction among the low-risk group, i.e., LL, then we get 107 000 deaths and an
ICU capacity that is exceeded on 48 days without tracing, which can be brought down to 17 000

deaths and 0 days with tracing and 80% compliance.
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Figure 4. Role of Compliance and the Asymptomatic Rate for
Tracing. Panel (top-left): Changing Compliance in B2. Panel (top-
right): Changing the Asymptomatic Rate in B2 with high (80%)
compliance. (bottom-left): Changing Compliance in GSD3. Panel
(bottom-right): Changing the Asymptomatic Rate in GSD3 with
high (80%) compliance.

drops to 40%, the number of deaths shoots up to exceed 400 000. This suggests that
tracing should be used in a careful way and combined with a tailored strategy to
open up sectors where tracing can be made mandatory—if one wants to rely on its
effectiveness. The bottom-left panel shows the same effects in scenario GSD3-Trace.
As social distancing measures are in place in this scenario, the death toll is smaller.
Note also that—since vulnerable groups are protected in this scenario—the gradient
is less steep: 70% compliance in this scenario implies a 71% increase in deaths
compared to full compliance, as opposed to the 1100% increase observed in B2-Trace.

Another crucial parameter for the success of tracing is the asymptomatic rate.
As asymptomatic individuals do not notice that they are ill, they and their contacts
cannot be removed from the infectious population via contact tracing. The top-right
panel in Figure 4 shows the effect of increasing the asymptomatic rate in Scenario B2
with 80% compliance, starting from 25%. Clearly, the higher the asymptomatic
rate the less effective tracing is in reducing new infections and ultimately deaths.
The bottom-right panel shows a similar effect for GSD3. It is noticeable, though,
that the gradient here is much less steep, i.e., contact tracing with a high compliance
rate is still effective if the asymptomatic rate is higher.

5. Conclusion

In this paper, we propose an extension of the epidemiological SEIR model to
enable the analysis of several measures of epidemic control that are currently
discussed. All those measures focus on loosening the lockdown in order to combine
health protection with higher societal and economic activity. We introduce different
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groups into the SEIR model that may differ both in their underlying parameters as
well as in their behavioral response to public health interventions. In particular, we
allow the infectiousness parameters to differ within and across groups. Moreover,
groups may have different asymptomatic, hospitalization, and lethality rates. Within
this framework, we are able to analyze social distancing measures that differentiate
across groups, specific protection of groups with high lethality rates, as well as the
detailed effects of “trace & isolate” strategies with different levels of take-up of the
tracing apps needed. We moreover shed light on the attractiveness to combine these
measures.

Our results highlight sharp trade-offs between different goals of epidemic control
and also illustrate how tailored social distancing and protection measures could
be effectively combined with a “trace & isolate” approach to keep severe infections
within the capacity of the health system and the death toll low. However, our
analysis also clearly illustrates the well known downside of rigorous epidemic control:
The duration of the epidemic is extended far into the future, making it necessary
to continue rigorous control measures for possibly very long time-spans until a
vaccine becomes widely available. On the positive side, we illustrate that mild social
distancing in combination with a “trace & isolate” approach could be a promising
way to control the epidemic in the medium run. This is, however, only true if take-up
rates for the apps are high enough within those groups in which social distancing
is loosened. This is an unlikely scenario in everyday life, however, it could well
create opportunities to open businesses under the condition that tracing is made
mandatory. This could definitely apply to industrial production and the services
industry, and may also be a temporary regime in education. From a practical
perspective, the speed of infection control will also be crucial for effectiveness. In
our model we assume that infection chains are broken whenever the infectious and
the infected individual use an app. This, however, is only true if the health system
operates fast enough to isolate the infected individual within the incubation period.

Let us finally note that all our results stem from a case study that necessarily
builds on a fragile data base. This is due to the fact that in the beginning of the
pandemic, test capacities were scarce—which they still are—and therefore none of
the parameters originates from controlled random trials. As time goes bye, this
situation will change. The main contribution of our paper, the extension of the
SEIR model to SEI3Q3RD, can easily be applied to new and more reliable data
sets. Our model and results also provide guidance to which parameters are key
to be identified reliably in order to analyze the effectiveness of epidemic control
approaches in more detail.
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